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Abstract
The Conte–Musette method has been modified for the search of only elliptic
solutions to systems of differential equations. A key idea of this a prior
restriction is to simplify calculations by means of the use of a few Laurent-
series solutions instead of one and the use of the residue theorem. The
application of this approach to the quintic complex one-dimensional Ginzburg–
Landau equation (CGLE5) allows us to find elliptic solutions in the wave form.
Restrictions on coefficients, which are necessary conditions for the existence
of elliptic solutions for the CGLE5, have been found as well. We demonstrate
that to find elliptic solutions the analysis of a system of differential equations
is preferable to the analysis of the equivalent single differential equation.

PACS numbers: 04.20.Jb, 02.30.−f, 47.27.ed

1. Introduction

At present methods for construction of special solutions of nonintegrable systems in terms of
elementary (more precisely, degenerated elliptic) and elliptic functions are actively developed
[1–20] (see also [21] and references therein). Some of these methods are intended for the
search for elliptic solutions only [11, 15]; others allow us to find either solutions in terms of
elementary functions only [2–4, 20] or both types of solutions [1, 5–10, 12–14, 16–19]. Note
that the methods [13, 17] allow us to find multivalued solutions as well.

A nonintegrable system has elliptic solutions, only if it has the Laurent-series solutions.
Such local solutions can be constructed by means of the Ablowitz–Ramani–Segur algorithm
of the Painlevé test [22] (see also [21, 23, 24]). In this way one obtains solutions only as formal
series. That is sufficient because really only a finite number of coefficients of these series are
used. Examples of construction of such solutions are given in [4, 25]. The Laurent-series
solutions give the information about the global behaviour of differential systems and assist to
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look for both exact solutions [5] and the first integrals [26]. The Laurent-series solutions can
be used to prove the nonexistence of elliptic solutions [27, 28] as well.

In [5], a new method for construction of single-valued special solutions for nonintegrable
differential equations has been proposed. A key idea of this method is the use of the Laurent-
series solutions to transform the initial differential equation into a nonlinear system of algebraic
equations. Using this method one can in principle find all elliptic and degenerate elliptic
solutions. Unfortunately if the initial differential equation includes a large number of numeric
parameters, then it is difficult to solve the obtained nonlinear system of algebraic equations.

The goal of this paper is to propose a modification of the Conte–Musette method [5],
which allows us to seek elliptic solutions only. We show that in this case it is possible to fix
some parameters of the initial differential system and therefore simplify the resulting system
of algebraic equations. To do this we use the Hone method, which has been proposed to
prove the non-existence of elliptic solutions [27]. Note that using our approach one can find
in principal all elliptic solutions.

In [5], the Musette and Conte have transformed the initial system of two coupled ordinary
differential equations into the equivalent single differential equation and only after this have
constructed the Laurent-series solutions. In our paper we demonstrate that the analysis of the
system of differential equations can give more information than the analysis of the equivalent
differential equation.

2. The Conte–Musette method for the system of differential equations

In [5], Conte and Musette have proposed a way to search for elliptic and degenerate elliptic
solutions to a polynomial autonomous differential equation. In this section we reformulate
this method for a system of such equations:

Fi

(�y(n)

;t , �y(n−1)

;t , . . . , �y;t , �y) = 0, i = 1, . . . , N, (1)

where �y = {y1(t), y2(t), . . . , yL(t)} and y
(k)

j ;t = dkyj

dtk
.

It is known that any elliptic function (including any degenerate one) is a solution of some
first-order polynomial autonomous differential equation. An elliptic function, whose poles
have the order p, should satisfy the following equation (see the details in [5]):

m∑
k=0

(p+1)(m−k)/p∑
j=0

hj,ky
jyt

k = 0, h0,m = 1, (2)

where m is some positive integer number. The summation in (2) runs over nonnegative integers
j that are less than or equal to (p + 1)(m − k)/p. Coefficients hj,k are constants. It is proven
that the general solution of (2) is either an elliptic function, or a rational function of eγ x , γ

being some constant, or a rational function of x. Note that the third case is a degeneracy of the
second one, which in turn is a degenerate case of the first one.

The Conte–Musette algorithm is the following [5] (see also [6]):

(i) Choose a positive integer number m, define the form of (2) and calculate the number of
unknown coefficients hj,k .

(ii) Construct solutions of system (1) in the form of Laurent series. System (1) is autonomous,
so the coefficients of the Laurent series do not depend on the position of the singular point.
They may depend on values of the numerical parameters of (1). In addition, some of these
coefficients (the number of which is less than the order of system (1)) may take arbitrary
values and have to be considered as new numerical parameters. One should compute
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more coefficients of the Laurent series than the number of numerical parameters in the
Laurent series plus the number of coefficients hj,k .

(iii) Choose a Laurent-series expansion for some function yk and substitute the obtained
Laurent-series coefficients into (2). This substitution transforms (2) into a linear and
overdetermined system in hj,k with coefficients depending on numerical parameters.

(iv) Eliminate coefficients hj,k and get a nonlinear system in the parameters.
(v) Solve the obtained nonlinear system.

Conte and Musette note that a computer algebra package is highly recommended for using
their method [6]. For the given system it is easy to calculate the Laurent-series solutions to
any accuracy. These computations base on the Painlevé test, which has been implemented in
the most popular computer algebra systems [29–32]. The first package of computer algebra
procedures, which realize the third and the fourth steps of the algorithm, has been written
in AMP [33] by Conte. One can also use our Maple and REDUCE packages of procedures,
which are accessible via the Internet [34] and are described in [35, 36]. So, one passes the
first four steps of algorithm without any difficulties.

At the fifth (last) step one should solve an overdetermined system of nonlinear algebraic
equations. The standard method for solving of such systems is the construction of a
lexicographically ordered Gröbner basis [37] (see also [38–40]). This construction is not
simple even with the use of modern computer algebra systems. The computer memory
required for constructing of this basis depends, in the general case, exponentially on the
number of the unknowns. Therefore, this number should be made as small as possible.

The purpose of this paper is to show that we can essentially simplify the algebraic system
of equations, which we have to solve on the last step of the Conte–Musette method, if we
restrict ourselves to search for only elliptic solutions.

In [5], Conte and Musette have used their method to find wave solutions of the complex
cubic Ginzburg–Landau equation (CGLE3). The nonexistence of elliptic travelling and
standing wave solutions of the CGLE3 has been proved in [27] and [28] respectively. In
section 4 we seek elliptic solutions of the quintic complex Ginzburg–Landau equation (CGLE5)
using our modification of the Conte–Musette method. Note that both the CGLE3 and the
CGLE5 have only one-parameter Laurent-series solutions in the wave form and there exist
only a finite number of such solutions.

Our approach can be effectively used in investigation of any system (1) or a single
differential equation, which has only a finite number of different Laurent-series solutions.
Note that for a wide class of such differential equations it has been proved that all their
meromorphic solutions are elliptic or degenerated elliptic functions [41].

3. The quintic complex Ginzburg–Landau equation

The one-dimensional quintic complex Ginzburg–Landau equation (CGLE5) is a generalization
of the one-dimensional cubic complex Ginzburg–Landau equation [42] (CGLE3), which is
one of the most-studied nonlinear equations (see [43] and references therein). Moreover, the
CGLE5 is a generic equation which describes many physical phenomena, for example, the
behaviour of travelling patterns in binary fluid convection [44] and the large-scale behaviour
of many nonequilibrium pattern-forming systems [45].

The CGLE5 is as follows:

iAt + pAxx + q|A|2A + r|A|4A − iγA = 0, (3)

where the subscribes denote partial derivatives, At ≡ ∂A
∂t

,Axx ≡ ∂2A
∂x2 , p, q, r ∈ C and γ ∈ R.
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One of the most important directions in the study of the CGLE5 is the consideration of
its travelling wave reduction [1, 4, 6, 44, 46, 47],

A(x, t) =
√

M(ξ) ei(ϕ(ξ)−ωt), ξ = x − ct, c ∈ R, ω ∈ R. (4)

Substituting (4) into (3) and multiplying both sides of this equation on 4M2/A we obtain

2pM ′′M − pM ′2 + 4ipψMM ′ + 2(2ω − ic − 2iγ

+ 2cψ − 2pψ2 + 2ipψ ′)M2 + 4qM3 + 4rM4 = 0, (5)

where ψ ≡ ϕ′ ≡ dϕ

dξ
,M ′ ≡ dM

dξ
. Equation (5) is a system of two equations: both real and

imaginary parts of its left-hand side have to be equal to zero. Dividing (5) by p and separating
real terms from imaginary ones, we obtain the following system:{

2MM ′′ − M ′2 − 4M2ψ̃2 − 2c̃MM ′ + 4giM
2 + 4drM

3 + 4urM
4 = 0,

Mψ̃ ′ + ψ̃(M ′ − c̃M) − grM + diM
2 + uiM

3 = 0,
(6)

where the new real variables are as follows:

ur + iui = r

p
, dr + idi = q

p
, sr − isi = 1

p
, (7)

gr + igi = (γ + iω)(sr − isi) +
1

2
c2sisr +

i

4
c2s2

r (8)

and

ψ̃ ≡ ψ − csr

2
, c̃ ≡ csi . (9)

System (6) includes seven real parameters: gr, gi, dr , di, ur , ui and c̃. Note that to obtain
(6) from (5) we assume that the functions M(ξ) and ψ(ξ) are real.

The standard way to construct exact solutions for system (6) is to transform it into the
equivalent third-order differential equation for M. We rewrite the first equation of system (6)
as

ψ̃2 = G

M2
, (10)

where

G ≡ 1

2
MM ′′ − 1

4
M ′2 − c̃

2
MM ′ + giM

2 + drM
3 + urM

4. (11)

From (10) it follows that

ψ̃ ′ψ̃ = G′M − 2GM ′

2M3
. (12)

Multiplying the second equation of (6) on ψ̃ and substituting (10) and (12) into it, we
express ψ̃ in terms of M and its derivatives,

ψ̃ = G′ − 2c̃G

2M2(gr − diM − uiM2)
(13)

and obtain the third-order equation for M,

(G′ − 2c̃G)2 + 4GM2(gr − diM − uiM
2)2 = 0. (14)
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4. Construction of elliptic solutions

4.1. The Laurent-series solutions

We consider the case (p/r) �∈ R, which corresponds to the condition ui �= 0. In this case (14)
is not integrable [4] and its general solution (which should depend on three arbitrary integration
constants) is not known. Using the Painlevé analysis [4] it has been shown that single-valued
solutions of (6) can depend on only one arbitrary parameter. System (6) is autonomous,
so this parameter is ξ0: if M = f (ξ) is a solution, then M = f (ξ − ξ0), where ξ0 ∈ C

has to be a solution. Special solutions in terms of elementary functions have been found in
[1, 4, 6, 47]. All known exact solutions of (6) are elementary (rational or hyperbolic) functions.
The full list of these solutions is presented in [6]. Note that in the case ui = 0 elliptic solutions
have been found [48]. The purpose of this section is to find at least one elliptic solution of (6)
with ui �= 0.

System (6) is invariant under the transformation

ψ̃ → − ψ̃, gr → − gr, di → − di, ui → − ui; (15)

therefore, we can assume that ui > 0 without loss of generality. Moreover, using scale
transformations

M → λM, dr → dr

λ
, di → di

λ
, ur → ur

λ2
, ui → ui

λ2
, (16)

we can always put ui = 1.
Let us construct Laurent-series solutions to system (6). We assume that in a sufficiently

small neighbourhood of the singularity point ξ0 the functions ψ̃ and M tend to infinity as some
powers of ξ − ξ0,

ψ̃ = A(ξ − ξ0)
α + · · · and M = B(ξ − ξ0)

β + · · · , (17)

where α and β are negative integer numbers and, of course, A �= 0 and B �= 0. Substituting
(17) into (6) we obtain that two or more terms in the equations of system (6) balance if and
only if α = −1 and β = −1. In other words, in this case these terms have equal powers and
the other terms can be ignored as ξ −→ ξ0. From the system{

B2(3 − 4A2 + 4urB
2) = 0,

2A − B2 = 0,
(18)

we obtain four nonzero solutions:

A1 = ur + 1
2

√
4u2

r + 3, B1 =
√

2ur +
√

4u2
r + 3, (19)

A2 = ur + 1
2

√
4u2

r + 3, B2 = −
√

2ur +
√

4u2
r + 3, (20)

A3 = ur − 1
2

√
4u2

r + 3, B3 =
√

2ur −
√

4u2
r + 3, (21)

A4 = ur − 1
2

√
4u2

r + 3, B4 = −
√

2ur −
√

4u2
r + 3. (22)

Therefore, system (6) has four types of Laurent-series solutions. Denote them as follows:

ψ̃k = Ak

ξ
+ ak,0 + ak,1ξ + · · · , Mk = Bk

ξ
+ bk,0 + bk,1ξ + · · · , k = 1, . . . , 4. (23)
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4.2. Restrictions on values of parameters

The purpose of this subsection is to check the possibility of existence of elliptic solutions
for (6). To do this we use the Hone method [27] based on the residues theorem (we recall
in the appendix the statement of the residues theorem and other basic properties of elliptic
functions). To make the Hone method more effective we propose two modifications.

First, we use the Laurent-series expansions not only of M(ξ), but also of ψ(ξ), which
should be an elliptic function as well. Indeed, let M(ξ) be a nontrivial elliptic function. If ψ̃

is a constant, then from the second equation of system (6) it follows that M(ξ) cannot be a
nontrivial elliptic function. Therefore, using (13), we conclude that ψ̃(ξ) has to be a nontrivial
elliptic function.

Second we prove and use the following lemma.

Lemma 1. An elliptic function cannot have two poles with the same Laurent-series expansions
in its fundamental parallelogram of periods.

Proof. Let some elliptic function 
(ξ) have two poles in points ξ0 and ξ1, which belong to
the fundamental parallelogram of periods. The corresponding Laurent series are the same and
have the convergence radius R. Then the function υ(ξ) = 
(ξ − ξ0) − 
(ξ − ξ1) is an elliptic
function as a difference between two elliptic functions with the same periods. At the same
time for all ξ such that |ξ | < R υ(ξ) = 0; therefore, υ(ξ) ≡ 0 and 
(ξ − ξ0) ≡ 
(ξ − ξ1) and
ξ1 − ξ0 is a period of 
(ξ). It contradicts to our assumption that both points ξ0 and ξ1 belong
to the fundamental parallelogram of periods. �

Let us consider the fundamental parallelogram of periods for the function M(ξ) and define
a number of its poles in this domain. Let M have a pole of type M1; hence, according to the
residue theorem, it should have a pole of type M2 (not a pole of type M4 because ur is a real
parameter). So ψ̃ has poles with the Laurent series ψ̃1 and ψ̃2. As an elliptic function it
should have a pole of type ψ̃3 or ψ̃4 as well. It means that the function M(ξ) should have a
pole of type M3 and hence a pole of type M4. So M(ξ) should have at least four different poles
in its fundamental parallelogram of periods. Using lemma 1, we obtain that the function M(ξ)

cannot have the same poles in the fundamental parallelogram of periods. Therefore, M(ξ) has
exactly four poles in its fundamental parallelogram of periods. In this case by means of the
residue theorem for ψ̃ we obtain

ur = 0. (24)

We obtain that the CGLE5 with ur �= 0 has no elliptic solution in the wave form. In
the case ur = 0 possible elliptic solutions should have four simple poles in the fundamental
parallelogram of periods, and, therefore, have the following form [49]:

M(ξ − ξ0) = C +
4∑

k=1

Bkζ(ξ − ξk), (25)

where the function ζ(ξ) = − ∫
℘(ξ) dξ . Constants Bk are given by (19)–(22). To define the

function M one should find periods of the Weierstrass elliptic function ℘(ξ) and the constants
C and ξk .

To obtain restrictions on other parameters, we apply the residue theorem to the functions
ψ̃2, ψ̃3 and so on. The residue theorem for the function ψ̃2 gives the equation

4∑
k=1

Akak,0 = 0. (26)
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The values of ak,0 are as follows (ur = 0):

a1,0 =
√

3
48 (6c̃ − 4√27di − 15 4√3dr), (27)

a2,0 =
√

3
48 (6c̃ + 4√27di + 15 4√3dr), (28)

a3,0 = −
√

3
48 (6c̃ + i( 4

√
27di − 15 4√3dr)), (29)

a4,0 = −
√

3
48 (6c̃ − i( 4√27di − 15 4√3dr)). (30)

Substituting Ak and ak,0 into (26), we obtain
4∑

k=1

Akak,0 = 3

4
c̃ = 0. (31)

For the function ψ̃3 the residue theorem gives
4∑

k=1

Ak

(
Akak,1 + a2

k,0

) = 0. (32)

Substituting the values of ak,1 into (32) and using c̃ = 0 we obtain

di
2 + 27dr

2 = 0 → di = ±i
√

27dr . (33)

The parameters dr and di should be real; therefore, dr = 0 and di = 0. This result means
that q = 0 and the cubic term is absent in equation (3).

So, consideration of ψ̃2 and ψ̃3 gives three restrictions:

c̃ = 0, dr = 0 and di = 0. (34)

The residue theorem for ψ̃4 gives the restriction

gigr = 0. (35)

We have used the residue theorem for some other combinations of functions ψ̃,M and
their derivatives, for example for ψ̃5, ψ̃6, ψ̃ψ̃ ′, ψ̃M,MM ′,M2, . . . ,M6, but do not obtain
new restrictions on coefficients.

4.3. The use of the Conte–Musette algorithm

Taking into account (24) and (34) we obtain system (6) in the following form:{
2MM ′′ − M ′2 − 4M2ψ̃2 + 4giM

2 = 0,

ψ̃ ′M + ψ̃M ′ − grM + M3 = 0.
(36)

Multiplying the first and second equations of system (36) on M2 and M respectively we
obtain the following system:{

JJ ′′ − 3
4J ′2 − 4J 2ψ̃2 + 4giJ

2 = 0,

ψ̃ ′J + 1
2 ψ̃J ′ − grJ + J 2 = 0,

(37)

where J = M2. It is easy to show that system (37) has only two different Laurent-series
solutions.

To find elliptic solutions of system (36) we use the Conte–Musette method. The function
ψ̃(ξ) is a solution of both systems (36) and (37). Therefore it has only two different Laurent-
series expansions, whereas the functions M(ξ) should have four different Laurent-series
expansions, so it is easier to find the first-order differential equation for ψ̃(ξ) than M(ξ).
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Equation (2) with m = 1 has no elliptic solution. Let ψ̃(ξ) satisfy (2) with m = 2,

ψ̃ ′2 + (h̃2,1ψ̃
2 + h̃1,1ψ̃ + h̃0,1)ψ̃

′ + h̃4,0ψ̃
4 + h̃3,0ψ̃

3 + h̃2,0ψ̃
2 + h̃1,0ψ̃ + h̃0,0 = 0. (38)

Substituting into (38) the Laurent series of ψ̃ , which begins from A1 (more exactly we
use the first ten coefficients), we obtain the following solution h̃k,j for an arbitrary value of
the parameter gr �= 0 and gi = 0:

h̃4,0 = − 4

3
, h̃0,0 = − g2

r

9
, h̃3,0 = h̃2,0 = h̃1,0 = h̃0,1 = h̃1,1 = h̃2,1 = 0, (39)

a few solutions with gi = 0 and gr = 0 and no solution for gi �= 0.
The straightforward substitution of the functions

ψ̆ =
√

3

2ξ
, M̆ = ±

4√3

ξ
and ψ̂ = −

√
3

2ξ
, M̂ = ± i

4√3

ξ
(40)

into (36) with gr = 0 and gi = 0 proves that they are exact solutions. The coefficients of
the Laurent-series solutions do not include arbitrary parameters, so the obtained solutions are
unique single-valued solutions and system (36) has no elliptic solution at gr = 0 and gi = 0.

In the case of solutions (39) the function ψ̃(ξ) satisfies the equation

ψ̃ ′2 = 4

3
ψ̃4 +

g2
r

9
. (41)

The polynomial on the right-hand side of (41) has four different roots; therefore, ψ̃ is a
non-degenerate elliptic function [49].

Surely we do not yet prove the existence of elliptic solutions to the CGLE5. For rigorous
proof we should find the function M(ξ) and check that this function is a solution of (14).
The function M(ξ) in a parallelogram of periods has four different Laurent-series expansions,
so we should choose the parameter m such that solutions of (2) have four poles in their
fundamental parallelogram of periods. Substituting the expression B/t into equation (2) with
p = 1, we obtain that B should be a root of the mth degree polynomial (we use the condition
B �= 0). Therefore the minimal possible value of m, which corresponds to four different
nonzero values of B is equal to 4.

Equation (2) for m = 4 and p = 1 has the following form:

M ′4 + (h2,3M
2 + h1,3M + h0,3)M

′3 + (h4,2M
4 + h3,2M

3 + h2,2M
2 + h1,2M + h0,2)M

′2

+ (h6,1M
6 + h5,1M

5 + h4,1M
4 + h3,1M

3 + h2,1M
2 + h1,1M

+ h0,1)M
′ + h8,0M

8 + h7,0M
7 + h6,0M

6 + h5,0M
5

+ h4,0M
4 + h3,0M

3 + h2,0M
2 + h1,0M + h0,0 = 0. (42)

Substituting the Laurent series Mk from (23), we transform the left-hand side of (42) into the
Laurent series, which has to be equal to zero. Therefore, we obtain the algebraic system in
hi,j and gr . The first algebraic equation, which corresponds to 1/ξ 8 is

B4
k

(
h8,0B

4
k − h6,1B

3
k + h4,2B

2
k − h2,3Bk + 1

) = 0, k = 1, . . . , 4, (43)

where Bk is defined by (19)–(22). To find all elliptic and degenerate elliptic solutions one can
use only one of Bk . We seek only elliptic solutions; hence, we demand that all Bk have to
satisfy (43), so we can consider equation (43) as the following system:



h8,0B
4
1 − h6,1B

3
1 + h4,2B

2
1 − h2,3B1 + 1 = 0,

h8,0B
4
2 − h6,1B

3
2 + h4,2B

2
2 − h2,3B2 + 1 = 0,

h8,0B
4
3 − h6,1B

3
3 + h4,2B

2
3 − h2,3B3 + 1 = 0,

h8,0B
4
4 − h6,1B

3
4 + h4,2B

2
4 − h2,3B4 + 1 = 0.

(44)
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Using the explicit values of Bk from (19)–(22), we obtain that

h8,0 = − 1
3 , h4,2 = 0, h6,1 = 0, h2,3 = 0. (45)

Taking into account (45), from other equations of the algebraic system, we obtain

h6,0 = 4
3gr, h4,0 = − 16

9 g2
r , h2,0 = 64

81g3
r , (46)

all other hi,j are equal to zero. So, the equation for M has the form

M ′4 = 1
81M2(3M2 − 4gr)

3. (47)

Note that equation (47) can be rewritten in terms of J :

J ′4 = 16
81J 3(3J − 4gr)

3. (48)

Equation (14) at ui = 1, ur = 0, c̃ = 0, dr = 0, di = 0 and gi = 0 has the form
1
4 (M ′′′)2 − (2MM ′′ − M ′2)(M2 − gr)

2 = 0. (49)

We multiply (49) on M ′2 and use (47) to express all derivatives of M(ξ) in terms of the
function M(ξ). Straightforward calculations show that any solution of (47) satisfies (49). So,
we obtain elliptic wave solutions of the CGLE5. If si �= 0 these solutions are the standing
wave solutions; in the opposite case (si = 0) the solutions can have an arbitrary speed c.

Note that we obtain (14) from (5) using the condition that M(ξ) is a real function. For
gr < 0 and any initial value of M we obtain real solutions. In the case gr > 0 there exists the
minimal possible initial value of M for which real solutions exist and only particular solutions
of (47) are suitable elliptic solutions to the CGLE5. The function M(ξ) has the form (25), the
values of constants can be determined from (47).

Using the first equation of (36) and equation (47) we find that

ψ̃4 = (3M2 − 4gr)(96M4 − 3M2 − 32M2gr + 4gr)
2

1296M2
. (50)

Summing up we can conclude that our modification of the Conte–Musette method allows
us to get two results: we obtain new elliptic wave solutions of the CGLE5 and prove that these
solutions are unique elliptic solutions for the CGLE5 with gr �= 0.

From (35) it follows that elliptic solutions can exist if gr or gi is equal to zero. For all
nonzero values of gr and zero gi we have found elliptic solutions. In the case gr = gi = 0
there is no elliptic solution. In the case of zero gr and nonzero gi we substitute the obtained
Laurent-series solutions Mk into equation (2) with m = 1, . . . , 4 and do obtain neither elliptic
functions nor degenerate elliptic solutions. We hope that the more detailed analysis of this
case allows us to find all elliptic solutions for the CGLE5.

5. Construction of elliptic solutions for nonintegrable systems

The approach, which we have considered in the previous section, is applicable to many
nonintegrable systems. The best domain of its applicability is nonintegrable systems of
autonomous nonlinear ordinary differential equations with so-called finiteness property [41]:
there are only a finite number of Laurent series that satisfy the system.

We propose the following way to the search for elliptic solutions to system (1):

(i) Choose the function yk which should be elliptic.
(ii) Check should other functions be elliptic or not.

(iii) Construct the formal Laurent-series solutions.
(iv) Using the residue theorem find domains of values of numeric parameters at which the

solution yk can be an elliptic function.
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(v) Choose a positive integer m, define the form of equation (2) and calculate the number
of unknown coefficients hj,k .

(vi) Calculate the sufficient number of coefficients for all Laurent series of yk and substitute
the obtained coefficients into (2). This substitution transforms (2) into a linear and
overdetermined system in hj,k with coefficients depending on numerical parameters.

(vii) Eliminate coefficients hj,k and get a nonlinear system in parameters.
(viii) Solve the obtained nonlinear system.

Key ideas of our modification of the Conte–Musette method are to restrict ourselves to the
search of elliptic solutions only and to consider not one Laurent series, but all found Laurent
series. We show that the use of the Conte–Musette method in combination with the Hone
method is very effective to find elliptic solutions.

6. Conclusions and discussions

Let us compare our approach with other methods for the construction of special solutions of
nonintegrable systems (see [6] as a review of these methods).

To find solutions for the CGLE5 the authors of papers [1, 4, 47] put some restrictions on
dependence between ψ̃ and M. The use of Laurent solutions allows us to search ψ̃ without
any restrictions and without eliminating M from system (6).

Without the use of the Laurent-series solutions it would be very difficult to find the
elliptic solutions of the CGLE5, because the form of (42) is very complex; for example, more
complex than the form of equations used in the Fan technology [8, 9]. The Kudryashov method
[11] as well as the methods [5–10, 12, 14, 16–19], proposed to search for both elliptic and
elementary solutions at all values of the numeric parameters such that single-valued solutions
can exist. The use of the residue theorem and the Hone method allows us to fix some of
numeric parameters and to simplify calculations without loss of elliptic solutions. Note that
we not only find elliptic solutions for the CGLE5, but also prove that there are no other elliptic
solutions for gr �= 0. Using the standard methods one cannot prove the uniqueness of the
obtained elliptic solutions.

In contrast to [5, 27], we consider a system of differential equations instead of the
equivalent single differential equation and demonstrate that system (6) is more convenient
for analysis than a single equation for M. Indeed, if we analyse only the Laurent-series
expansions of the function M, then we should also consider the case when M has not four,
but only two different Laurent-series expansions, beginning from B1 and B2 or B3 and B4.
The consideration of the Laurent-series expansions of two functions: ψ̃ and M allows us to
reject this possibility. Moreover, we can choose a function, whose analytic form we want to
find. Instead of the functions ψ̃ and M we can consider some combination, for example, a
polynomial, of these functions and seek this combination in the analytic form. Note that we
have no need of any differential equation for this combination. So, we can conclude that the
use of the Laurent-series solutions gives new insight into the problem of constructing of exact
solutions for nonintegrable systems.

Note that the Hone method and, therefore, our approach, is very effective in the case of
the CGLE5, because coefficients of the Laurent-series solutions depend only on parameters
of equations, i.e. they do not include additional arbitrary parameters (have no resonances). It
is an important problem to generalize the Hone method on the Laurent-series solutions with
resonances.

Another way for future investigations is the generalization of the Conte–Musette method
on the case of multivalued solutions. The first results in this direction have been obtained in
[19, 50].
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Appendix. Properties of elliptic functions

The function 
(z) of the complex variable z is a doubly periodic function if there exist two
numbers ω1 and ω2 with ω1/ω2 �∈ R, such that for all z ∈ C


(z) = 
(z + ω1) = 
(z + ω2). (A.1)

By definition a double-periodic meromorphic function is called an elliptic function
[49, 51]. These periods define the period parallelograms with vertices z0, z0 +N1ω1, z0 +N2ω2

and z0 + N1ω1 + N2ω2, where N1 and N2 are arbitrary natural numbers and z0 is an arbitrary
complex number. A parallelogram of periods is called the fundamental parallelogram
of periods, if it does not include other parallelograms of periods, which corresponds to
N1 = N2 = 1.

The classical theorems for elliptic functions [49, 51] prove that

• If an elliptic function has no poles then it is a constant.
• The number of elliptic function poles within any finite-period parallelogram is finite.
• The sum of residues within any finite-period parallelogram is equal to zero (the residue

theorem).
• If 
(z) is an elliptic function then any rational function of 
(z) and its derivatives is an

elliptic function as well.
• For each elliptic function 
(z) there exist an integer number m (m � 2) and coefficients

hi,j such that 
(z) is a solution of equation (2).
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